Paper ID: 2407.18002

Network Inversion of Convolutional Neural Nets

Pirzada Suhail, Amit Sethi

Neural networks have emerged as powerful tools across various applications, yet their decision-making process often remains opaque, leading to them being perceived as "black boxes." This opacity raises concerns about their interpretability and reliability, especially in safety-critical scenarios. Network inversion techniques offer a solution by allowing us to peek inside these black boxes, revealing the features and patterns learned by the networks behind their decision-making processes and thereby provide valuable insights into how neural networks arrive at their conclusions, making them more interpretable and trustworthy. This paper presents a simple yet effective approach to network inversion using a carefully conditioned generator that learns the data distribution in the input space of the trained neural network, enabling the reconstruction of inputs that would most likely lead to the desired outputs. To capture the diversity in the input space for a given output, instead of simply revealing the conditioning labels to the generator, we hideously encode the conditioning label information into vectors, further exemplified by heavy dropout in the generation process and minimisation of cosine similarity between the features corresponding to the generated images. The paper concludes with immediate applications of Network Inversion including in interpretability, explainability and generation of adversarial samples.

Submitted: Jul 25, 2024