Paper ID: 2407.18213
Effects of Scale on Language Model Robustness
Nikolaus Howe, Ian McKenzie, Oskar Hollinsworth, Michał Zajac, Tom Tseng, Aaron Tucker, Pierre-Luc Bacon, Adam Gleave
Language models exhibit scaling laws, whereby increasing model and dataset size yields predictable decreases in negative log likelihood, unlocking a dazzling array of capabilities. This phenomenon spurs many companies to train ever larger models in pursuit of ever improved performance. Yet, these models are vulnerable to adversarial inputs such as ``jailbreaks'' and prompt injections that induce models to perform undesired behaviors, posing a growing risk as models become more capable. Prior work indicates that computer vision models become more robust with model and data scaling, raising the question: does language model robustness also improve with scale? We study this question empirically in the classification setting, finding that without explicit defense training, larger models tend to be modestly more robust on most tasks, though the effect is not reliable. Even with the advantage conferred by scale, undefended models remain easy to attack in absolute terms, and we thus turn our attention to explicitly training models for adversarial robustness, which we show to be a much more compute-efficient defense than scaling model size alone. In this setting, we also observe that adversarially trained larger models generalize faster and better to modified attacks not seen during training when compared with smaller models. Finally, we analyze the offense/defense balance of increasing compute, finding parity in some settings and an advantage for offense in others, suggesting that adversarial training alone is not sufficient to solve robustness, even at greater model scales.
Submitted: Jul 25, 2024