Paper ID: 2407.18439
Impact of Recurrent Neural Networks and Deep Learning Frameworks on Real-time Lightweight Time Series Anomaly Detection
Ming-Chang Lee, Jia-Chun Lin, Sokratis Katsikas
Real-time lightweight time series anomaly detection has become increasingly crucial in cybersecurity and many other domains. Its ability to adapt to unforeseen pattern changes and swiftly identify anomalies enables prompt responses and critical decision-making. While several such anomaly detection approaches have been introduced in recent years, they primarily utilize a single type of recurrent neural networks (RNNs) and have been implemented in only one deep learning framework. It is unclear how the use of different types of RNNs available in various deep learning frameworks affects the performance of these anomaly detection approaches due to the absence of comprehensive evaluations. Arbitrarily choosing a RNN variant and a deep learning framework to implement an anomaly detection approach may not reflect its true performance and could potentially mislead users into favoring one approach over another. In this paper, we aim to study the influence of various types of RNNs available in popular deep learning frameworks on real-time lightweight time series anomaly detection. We reviewed several state-of-the-art approaches and implemented a representative anomaly detection approach using well-known RNN variants supported by three widely recognized deep learning frameworks. A comprehensive evaluation is then conducted to analyze the performance of each implementation across real-world, open-source time series datasets. The evaluation results provide valuable guidance for selecting the appropriate RNN variant and deep learning framework for real-time, lightweight time series anomaly detection.
Submitted: Jul 26, 2024