Paper ID: 2407.18961
MMAU: A Holistic Benchmark of Agent Capabilities Across Diverse Domains
Guoli Yin, Haoping Bai, Shuang Ma, Feng Nan, Yanchao Sun, Zhaoyang Xu, Shen Ma, Jiarui Lu, Xiang Kong, Aonan Zhang, Dian Ang Yap, Yizhe zhang, Karsten Ahnert, Vik Kamath, Mathias Berglund, Dominic Walsh, Tobias Gindele, Juergen Wiest, Zhengfeng Lai, Xiaoming Wang, Jiulong Shan, Meng Cao, Ruoming Pang, Zirui Wang
Recent advances in large language models (LLMs) have increased the demand for comprehensive benchmarks to evaluate their capabilities as human-like agents. Existing benchmarks, while useful, often focus on specific application scenarios, emphasizing task completion but failing to dissect the underlying skills that drive these outcomes. This lack of granularity makes it difficult to deeply discern where failures stem from. Additionally, setting up these environments requires considerable effort, and issues of unreliability and reproducibility sometimes arise, especially in interactive tasks. To address these limitations, we introduce the Massive Multitask Agent Understanding (MMAU) benchmark, featuring comprehensive offline tasks that eliminate the need for complex environment setups. It evaluates models across five domains, including Tool-use, Directed Acyclic Graph (DAG) QA, Data Science and Machine Learning coding, Contest-level programming and Mathematics, and covers five essential capabilities: Understanding, Reasoning, Planning, Problem-solving, and Self-correction. With a total of 20 meticulously designed tasks encompassing over 3K distinct prompts, MMAU provides a comprehensive framework for evaluating the strengths and limitations of LLM agents. By testing 18 representative models on MMAU, we provide deep and insightful analyses. Ultimately, MMAU not only sheds light on the capabilities and limitations of LLM agents but also enhances the interpretability of their performance. Datasets and evaluation scripts of MMAU are released at this https URL.
Submitted: Jul 18, 2024