Paper ID: 2407.19510
EPD: Long-term Memory Extraction, Context-awared Planning and Multi-iteration Decision @ EgoPlan Challenge ICML 2024
Letian Shi, Qi Lv, Xiang Deng, Liqiang Nie
In this technical report, we present our solution for the EgoPlan Challenge in ICML 2024. To address the real-world egocentric task planning problem, we introduce a novel planning framework which comprises three stages: long-term memory Extraction, context-awared Planning, and multi-iteration Decision, named EPD. Given the task goal, task progress, and current observation, the extraction model first extracts task-relevant memory information from the progress video, transforming the complex long video into summarized memory information. The planning model then combines the context of the memory information with fine-grained visual information from the current observation to predict the next action. Finally, through multi-iteration decision-making, the decision model comprehensively understands the task situation and current state to make the most realistic planning decision. On the EgoPlan-Test set, EPD achieves a planning accuracy of 53.85% over 1,584 egocentric task planning questions. We have made all codes available at https://github.com/Kkskkkskr/EPD .
Submitted: Jul 28, 2024