Paper ID: 2407.20250
Riemannian Geometry-Based EEG Approaches: A Literature Review
Imad Eddine Tibermacine, Samuele Russo, Ahmed Tibermacine, Abdelaziz Rabehi, Bachir Nail, Kamel Kadri, Christian Napoli
The application of Riemannian geometry in the decoding of brain-computer interfaces (BCIs) has swiftly garnered attention because of its straightforwardness, precision, and resilience, along with its aptitude for transfer learning, which has been demonstrated through significant achievements in global BCI competitions. This paper presents a comprehensive review of recent advancements in the integration of deep learning with Riemannian geometry to enhance EEG signal decoding in BCIs. Our review updates the findings since the last major review in 2017, comparing modern approaches that utilize deep learning to improve the handling of non-Euclidean data structures inherent in EEG signals. We discuss how these approaches not only tackle the traditional challenges of noise sensitivity, non-stationarity, and lengthy calibration times but also introduce novel classification frameworks and signal processing techniques to reduce these limitations significantly. Furthermore, we identify current shortcomings and propose future research directions in manifold learning and riemannian-based classification, focusing on practical implementations and theoretical expansions, such as feature tracking on manifolds, multitask learning, feature extraction, and transfer learning. This review aims to bridge the gap between theoretical research and practical, real-world applications, making sophisticated mathematical approaches accessible and actionable for BCI enhancements.
Submitted: Jul 19, 2024