Paper ID: 2407.20271

Learn while Unlearn: An Iterative Unlearning Framework for Generative Language Models

Haoyu Tang, Ye Liu, Xukai Liu, Kai Zhang, Yanghai Zhang, Qi Liu, Enhong Chen

Recent advancements in machine learning, particularly in Natural Language Processing (NLP), have led to the development of sophisticated models trained on extensive datasets, yet raising concerns about the potential leakage of sensitive information. In response, regulatory measures such as the European Union's General Data Protection Regulation (GDPR) have driven increasing interest in Machine Unlearning techniques, which enable models to selectively forget specific data entries. Early approaches primarily relied on pre-processing methods, while more recent research has shifted towards training-based unlearning techniques. Despite their effectiveness, most existing methods require access to the original training data, which is often inaccessible. Additionally, directly applying unlearning techniques bear the cost of undermining the model's expressive capabilities. To address these challenges, we introduce the Iterative Contrastive Unlearning (ICU) framework, which consists of three core components: A Knowledge Unlearning Induction module designed to remove specific knowledge through an unlearning loss; A Contrastive Learning Enhancement module to preserve the model's expressive capabilities against the pure unlearning goal; And an Iterative Unlearning Refinement module that dynamically assess the unlearning extent on specific data pieces and make iterative update. Experimental results demonstrate the efficacy of our ICU method in unlearning sensitive information while maintaining the model's overall performance, offering a promising solution for privacy-conscious machine learning applications.

Submitted: Jul 25, 2024