Paper ID: 2407.20367
Mixed Newton Method for Optimization in Complex Spaces
Nikita Yudin, Roland Hildebrand, Sergey Bakhurin, Alexander Degtyarev, Anna Lisachenko, Ilya Kuruzov, Andrei Semenov, Mohammad Alkousa
In this paper, we modify and apply the recently introduced Mixed Newton Method, which is originally designed for minimizing real-valued functions of complex variables, to the minimization of real-valued functions of real variables by extending the functions to complex space. We show that arbitrary regularizations preserve the favorable local convergence properties of the method, and construct a special type of regularization used to prevent convergence to complex minima. We compare several variants of the method applied to training neural networks with real and complex parameters.
Submitted: Jul 29, 2024