Paper ID: 2407.20917

How to Choose a Reinforcement-Learning Algorithm

Fabian Bongratz, Vladimir Golkov, Lukas Mautner, Luca Della Libera, Frederik Heetmeyer, Felix Czaja, Julian Rodemann, Daniel Cremers

The field of reinforcement learning offers a large variety of concepts and methods to tackle sequential decision-making problems. This variety has become so large that choosing an algorithm for a task at hand can be challenging. In this work, we streamline the process of choosing reinforcement-learning algorithms and action-distribution families. We provide a structured overview of existing methods and their properties, as well as guidelines for when to choose which methods. An interactive version of these guidelines is available online at https://rl-picker.github.io/.

Submitted: Jul 30, 2024