Paper ID: 2407.21546

Black box meta-learning intrinsic rewards for sparse-reward environments

Octavio Pappalardo, Rodrigo Ramele, Juan Miguel Santos

Despite the successes and progress of deep reinforcement learning over the last decade, several challenges remain that hinder its broader application. Some fundamental aspects to improve include data efficiency, generalization capability, and ability to learn in sparse-reward environments, which often require human-designed dense rewards. Meta-learning has emerged as a promising approach to address these issues by optimizing components of the learning algorithm to meet desired characteristics. Additionally, a different line of work has extensively studied the use of intrinsic rewards to enhance the exploration capabilities of algorithms. This work investigates how meta-learning can improve the training signal received by RL agents. The focus is on meta-learning intrinsic rewards under a framework that doesn't rely on the use of meta-gradients. We analyze and compare this approach to the use of extrinsic rewards and a meta-learned advantage function. The developed algorithms are evaluated on distributions of continuous control tasks with both parametric and non-parametric variations, and with only sparse rewards accessible for the evaluation tasks.

Submitted: Jul 31, 2024