Paper ID: 2408.00258
Improving Image De-raining Using Reference-Guided Transformers
Zihao Ye, Jaehoon Cho, Changjae Oh
Image de-raining is a critical task in computer vision to improve visibility and enhance the robustness of outdoor vision systems. While recent advances in de-raining methods have achieved remarkable performance, the challenge remains to produce high-quality and visually pleasing de-rained results. In this paper, we present a reference-guided de-raining filter, a transformer network that enhances de-raining results using a reference clean image as guidance. We leverage the capabilities of the proposed module to further refine the images de-rained by existing methods. We validate our method on three datasets and show that our module can improve the performance of existing prior-based, CNN-based, and transformer-based approaches.
Submitted: Aug 1, 2024