Paper ID: 2408.00619
Harnessing Uncertainty-aware Bounding Boxes for Unsupervised 3D Object Detection
Ruiyang Zhang, Hu Zhang, Hang Yu, Zhedong Zheng
Unsupervised 3D object detection aims to identify objects of interest from unlabeled raw data, such as LiDAR points. Recent approaches usually adopt pseudo 3D bounding boxes (3D bboxes) from clustering algorithm to initialize the model training. However, pseudo bboxes inevitably contain noise, and such inaccuracies accumulate to the final model, compromising the performance. Therefore, in an attempt to mitigate the negative impact of inaccurate pseudo bboxes, we introduce a new uncertainty-aware framework for unsupervised 3D object detection, dubbed UA3D. In particular, our method consists of two phases: uncertainty estimation and uncertainty regularization. (1) In the uncertainty estimation phase, we incorporate an extra auxiliary detection branch alongside the original primary detector. The prediction disparity between the primary and auxiliary detectors could reflect fine-grained uncertainty at the box coordinate level. (2) Based on the assessed uncertainty, we adaptively adjust the weight of every 3D bbox coordinate via uncertainty regularization, refining the training process on pseudo bboxes. For pseudo bbox coordinate with high uncertainty, we assign a relatively low loss weight. Extensive experiments verify that the proposed method is robust against the noisy pseudo bboxes, yielding substantial improvements on nuScenes and Lyft compared to existing approaches, with increases of +6.9% AP$_{BEV}$ and +2.5% AP$_{3D}$ on nuScenes, and +4.1% AP$_{BEV}$ and +2.0% AP$_{3D}$ on Lyft.
Submitted: Aug 1, 2024