Paper ID: 2408.00699
Granular-Balls based Fuzzy Twin Support Vector Machine for Classification
Lixi Zhao, Weiping Ding, Duoqian Miao, Guangming Lang
The twin support vector machine (TWSVM) classifier has attracted increasing attention because of its low computational complexity. However, its performance tends to degrade when samples are affected by noise. The granular-ball fuzzy support vector machine (GBFSVM) classifier partly alleviates the adverse effects of noise, but it relies solely on the distance between the granular-ball's center and the class center to design the granular-ball membership function. In this paper, we first introduce the granular-ball twin support vector machine (GBTWSVM) classifier, which integrates granular-ball computing (GBC) with the twin support vector machine (TWSVM) classifier. By replacing traditional point inputs with granular-balls, we demonstrate how to derive a pair of non-parallel hyperplanes for the GBTWSVM classifier by solving a quadratic programming problem. Subsequently, we design the membership and non-membership functions of granular-balls using Pythagorean fuzzy sets to differentiate the contributions of granular-balls in various regions. Additionally, we develop the granular-ball fuzzy twin support vector machine (GBFTSVM) classifier by incorporating GBC with the fuzzy twin support vector machine (FTSVM) classifier. We demonstrate how to derive a pair of non-parallel hyperplanes for the GBFTSVM classifier by solving a quadratic programming problem. We also design algorithms for the GBTSVM classifier and the GBFTSVM classifier. Finally, the superior classification performance of the GBTWSVM classifier and the GBFTSVM classifier on 20 benchmark datasets underscores their scalability, efficiency, and robustness in tackling classification tasks.
Submitted: Aug 1, 2024