Paper ID: 2408.01094
An Encoding--Searching Separation Perspective on Bi-Encoder Neural Search
Hung-Nghiep Tran, Akiko Aizawa, Atsuhiro Takasu
This paper reviews, analyzes, and proposes a new perspective on the bi-encoder architecture for neural search. While the bi-encoder architecture is widely used due to its simplicity and scalability at test time, it has some notable issues such as low performance on seen datasets and weak zero-shot performance on new datasets. In this paper, we analyze these issues and summarize two main critiques: the encoding information bottleneck problem and limitations of the basic assumption of embedding search. We then construct a thought experiment to logically analyze the encoding and searching operations and challenge the basic assumption of embedding search. Building on these observations, we propose a new perspective on the bi-encoder architecture called the \textit{encoding--searching separation} perspective, which conceptually and practically separates the encoding and searching operations. This new perspective is applied to explain the root cause of the identified issues and discuss ways to mitigate the problems. Finally, we discuss the implications of the ideas underlying the new perspective, the design surface that it exposes and the potential research directions arising from it.
Submitted: Aug 2, 2024