Paper ID: 2408.01928
A Semi-supervised Multi-channel Graph Convolutional Network for Query Classification in E-commerce
Chunyuan Yuan, Ming Pang, Zheng Fang, Xue Jiang, Changping Peng, Zhangang Lin
Query intent classification is an essential module for customers to find desired products on the e-commerce application quickly. Most existing query intent classification methods rely on the users' click behavior as a supervised signal to construct training samples. However, these methods based entirely on posterior labels may lead to serious category imbalance problems because of the Matthew effect in click samples. Compared with popular categories, it is difficult for products under long-tail categories to obtain traffic and user clicks, which makes the models unable to detect users' intent for products under long-tail categories. This in turn aggravates the problem that long-tail categories cannot obtain traffic, forming a vicious circle. In addition, due to the randomness of the user's click, the posterior label is unstable for the query with similar semantics, which makes the model very sensitive to the input, leading to an unstable and incomplete recall of categories. In this paper, we propose a novel Semi-supervised Multi-channel Graph Convolutional Network (SMGCN) to address the above problems from the perspective of label association and semi-supervised learning. SMGCN extends category information and enhances the posterior label by utilizing the similarity score between the query and categories. Furthermore, it leverages the co-occurrence and semantic similarity graph of categories to strengthen the relations among labels and weaken the influence of posterior label instability. We conduct extensive offline and online A/B experiments, and the experimental results show that SMGCN significantly outperforms the strong baselines, which shows its effectiveness and practicality.
Submitted: Aug 4, 2024