Paper ID: 2408.02074
Applying Conditional Generative Adversarial Networks for Imaging Diagnosis
Haowei Yang, Yuxiang Hu, Shuyao He, Ting Xu, Jiajie Yuan, Xingxin Gu
This study introduces an innovative application of Conditional Generative Adversarial Networks (C-GAN) integrated with Stacked Hourglass Networks (SHGN) aimed at enhancing image segmentation, particularly in the challenging environment of medical imaging. We address the problem of overfitting, common in deep learning models applied to complex imaging datasets, by augmenting data through rotation and scaling. A hybrid loss function combining L1 and L2 reconstruction losses, enriched with adversarial training, is introduced to refine segmentation processes in intravascular ultrasound (IVUS) imaging. Our approach is unique in its capacity to accurately delineate distinct regions within medical images, such as tissue boundaries and vascular structures, without extensive reliance on domain-specific knowledge. The algorithm was evaluated using a standard medical image library, showing superior performance metrics compared to existing methods, thereby demonstrating its potential in enhancing automated medical diagnostics through deep learning
Submitted: Jul 17, 2024