Paper ID: 2408.02201
Evaluating the Performance of Large Language Models for SDG Mapping (Technical Report)
Hui Yin, Amir Aryani, Nakul Nambiar
The use of large language models (LLMs) is expanding rapidly, and open-source versions are becoming available, offering users safer and more adaptable options. These models enable users to protect data privacy by eliminating the need to provide data to third parties and can be customized for specific tasks. In this study, we compare the performance of various language models on the Sustainable Development Goal (SDG) mapping task, using the output of GPT-4o as the baseline. The selected open-source models for comparison include Mixtral, LLaMA 2, LLaMA 3, Gemma, and Qwen2. Additionally, GPT-4o-mini, a more specialized version of GPT-4o, was included to extend the comparison. Given the multi-label nature of the SDG mapping task, we employed metrics such as F1 score, precision, and recall with micro-averaging to evaluate different aspects of the models' performance. These metrics are derived from the confusion matrix to ensure a comprehensive evaluation. We provide a clear observation and analysis of each model's performance by plotting curves based on F1 score, precision, and recall at different thresholds. According to the results of this experiment, LLaMA 2 and Gemma still have significant room for improvement. The other four models do not exhibit particularly large differences in performance. The outputs from all seven models are available on Zenodo: https://doi.org/10.5281/zenodo.12789375.
Submitted: Aug 5, 2024