Paper ID: 2408.02307

Low-Cost Self-Ensembles Based on Multi-Branch Transformation and Grouped Convolution

Hojung Lee, Jong-Seok Lee

Recent advancements in low-cost ensemble learning have demonstrated improved efficiency for image classification. However, the existing low-cost ensemble methods show relatively lower accuracy compared to conventional ensemble learning. In this paper, we propose a new low-cost ensemble learning, which can simultaneously achieve high efficiency and classification performance. A CNN is transformed into a multi-branch structure without introduction of additional components, which maintains the computational complexity as that of the original single model and also enhances diversity among the branches' outputs via sufficient separation between different pathways of the branches. In addition, we propose a new strategy that applies grouped convolution in the branches with different numbers of groups in different branches, which boosts the diversity of the branches' outputs. For training, we employ knowledge distillation using the ensemble of the outputs as the teacher signal. The high diversity among the outputs enables to form a powerful teacher, enhancing the individual branch's classification performance and consequently the overall ensemble performance. Experimental results show that our method achieves state-of-the-art classification accuracy and higher uncertainty estimation performance compared to previous low-cost ensemble methods. The code is available at https://github.com/hjdw2/SEMBG.

Submitted: Aug 5, 2024