Paper ID: 2408.02344
Machine Learning Applications in Medical Prognostics: A Comprehensive Review
Michael Fascia
Machine learning (ML) has revolutionized medical prognostics by integrating advanced algorithms with clinical data to enhance disease prediction, risk assessment, and patient outcome forecasting. This comprehensive review critically examines the application of various ML techniques in medical prognostics, focusing on their efficacy, challenges, and future directions. The methodologies discussed include Random Forest (RF) for sepsis prediction, logistic regression for cardiovascular risk assessment, Convolutional Neural Networks (CNNs) for cancer detection, and Long Short-Term Memory (LSTM) networks for predicting clinical deterioration. RF models demonstrate robust performance in handling high-dimensional data and capturing non-linear relationships, making them particularly effective for sepsis prediction. Logistic regression remains valuable for its interpretability and ease of use in cardiovascular risk assessment. CNNs have shown exceptional accuracy in cancer detection, leveraging their ability to learn complex visual patterns from medical imaging. LSTM networks excel in analyzing temporal data, providing accurate predictions of clinical deterioration. The review highlights the strengths and limitations of each technique, the importance of model interpretability, and the challenges of data quality and privacy. Future research directions include the integration of multi-modal data sources, the application of transfer learning, and the development of continuous learning systems. These advancements aim to enhance the predictive power and clinical applicability of ML models, ultimately improving patient outcomes in healthcare settings.
Submitted: Aug 5, 2024