Paper ID: 2408.02706
Bayesian Kolmogorov Arnold Networks (Bayesian_KANs): A Probabilistic Approach to Enhance Accuracy and Interpretability
Masoud Muhammed Hassan
Because of its strong predictive skills, deep learning has emerged as an essential tool in many industries, including healthcare. Traditional deep learning models, on the other hand, frequently lack interpretability and omit to take prediction uncertainty into account two crucial components of clinical decision making. In order to produce explainable and uncertainty aware predictions, this study presents a novel framework called Bayesian Kolmogorov Arnold Networks (BKANs), which combines the expressive capacity of Kolmogorov Arnold Networks with Bayesian inference. We employ BKANs on two medical datasets, which are widely used benchmarks for assessing machine learning models in medical diagnostics: the Pima Indians Diabetes dataset and the Cleveland Heart Disease dataset. Our method provides useful insights into prediction confidence and decision boundaries and outperforms traditional deep learning models in terms of prediction accuracy. Moreover, BKANs' capacity to represent aleatoric and epistemic uncertainty guarantees doctors receive more solid and trustworthy decision support. Our Bayesian strategy improves the interpretability of the model and considerably minimises overfitting, which is important for tiny and imbalanced medical datasets, according to experimental results. We present possible expansions to further use BKANs in more complicated multimodal datasets and address the significance of these discoveries for future research in building reliable AI systems for healthcare. This work paves the way for a new paradigm in deep learning model deployment in vital sectors where transparency and reliability are crucial.
Submitted: Aug 5, 2024