Paper ID: 2408.02743

KAN we improve on HEP classification tasks? Kolmogorov-Arnold Networks applied to an LHC physics example

Johannes Erdmann, Florian Mausolf, Jan Lukas Späh

Recently, Kolmogorov-Arnold Networks (KANs) have been proposed as an alternative to multilayer perceptrons, suggesting advantages in performance and interpretability. We study a typical binary event classification task in high-energy physics including high-level features and comment on the performance and interpretability of KANs in this context. We find that the learned activation functions of a one-layer KAN resemble the log-likelihood ratio of the input features. In deeper KANs, the activations in the first KAN layer differ from those in the one-layer KAN, which indicates that the deeper KANs learn more complex representations of the data. We study KANs with different depths and widths and we compare them to multilayer perceptrons in terms of performance and number of trainable parameters. For the chosen classification task, we do not find that KANs are more parameter efficient. However, small KANs may offer advantages in terms of interpretability that come at the cost of only a moderate loss in performance.

Submitted: Aug 5, 2024