Paper ID: 2408.03414
Logistic Regression makes small LLMs strong and explainable "tens-of-shot" classifiers
Marcus Buckmann, Edward Hill
For simple classification tasks, we show that users can benefit from the advantages of using small, local, generative language models instead of large commercial models without a trade-off in performance or introducing extra labelling costs. These advantages, including those around privacy, availability, cost, and explainability, are important both in commercial applications and in the broader democratisation of AI. Through experiments on 17 sentence classification tasks (2-4 classes), we show that penalised logistic regression on the embeddings from a small LLM equals (and usually betters) the performance of a large LLM in the "tens-of-shot" regime. This requires no more labelled instances than are needed to validate the performance of the large LLM. Finally, we extract stable and sensible explanations for classification decisions.
Submitted: Aug 6, 2024