Paper ID: 2408.04569

Activation thresholds and expressiveness of polynomial neural networks

Bella Finkel, Jose Israel Rodriguez, Chenxi Wu, Thomas Yahl

Polynomial neural networks have been implemented in a range of applications and present an advantageous framework for theoretical machine learning. A polynomial neural network of fixed architecture and activation degree gives an algebraic map from the network's weights to a set of polynomials. The image of this map is the space of functions representable by the network. Its Zariski closure is an affine variety known as a neurovariety. The dimension of a polynomial neural network's neurovariety provides a measure of its expressivity. In this work, we introduce the notion of the activation threshold of a network architecture which expresses when the dimension of a neurovariety achieves its theoretical maximum. In addition, we prove expressiveness results for polynomial neural networks with equi-width~architectures.

Submitted: Aug 8, 2024