Paper ID: 2408.05541
P3: A Policy-Driven, Pace-Adaptive, and Diversity-Promoted Framework for data pruning in LLM Training
Yingxuan Yang, Huayi Wang, Muning Wen, Xiaoyun Mo, Qiuying Peng, Jun Wang, Weinan Zhang
In the rapidly advancing field of Large Language Models (LLMs), effectively leveraging existing datasets during fine-tuning to maximize the model's potential is of paramount importance. This paper introduces P3, an adaptive framework aimed at optimizing the task-specific fine-tuning process through iterative data pruning. P3 consists of three key components: (1) Policy-driven Difficulty Measurement, which dynamically assesses data difficulty based on the model's real-time performance, replacing static metrics with adaptable evaluations; (2) Pace-Adaptive Selection, leveraging self-paced learning to progressively introduce more challenging data, thereby enhancing model capability; (3) Diversity Promotion, incorporating Determinantal Point Process (DPP) to ensure data diversity across epochs, enriching the learning process. We validate P3 on the reasoning scenarios, APPS and MATH, demonstrating significant improvements over traditional data pruning methods. By advancing dynamic data selection and utilization strategies, P3 contributes both a theoretical framework and concrete approach to fully exploit existing data for LLMs' performance improvement, offering utility across diverse tasks.
Submitted: Aug 10, 2024