Paper ID: 2408.05857

Comparative Evaluation of Memory Technologies for Synaptic Crossbar Arrays- Part 2: Design Knobs and DNN Accuracy Trends

Jeffry Victor, Chunguang Wang, Sumeet K. Gupta

Crossbar memory arrays have been touted as the workhorse of in-memory computing (IMC)-based acceleration of Deep Neural Networks (DNNs), but the associated hardware non-idealities limit their efficacy. To address this, cross-layer design solutions that reduce the impact of hardware non-idealities on DNN accuracy are needed. In Part 1 of this paper, we established the co-optimization strategies for various memory technologies and their crossbar arrays, and conducted a comparative technology evaluation in the context of IMC robustness. In this part, we analyze various design knobs such as array size and bit-slice (number of bits per device) and their impact on the performance of 8T SRAM, ferroelectric transistor (FeFET), Resistive RAM (ReRAM) and spin-orbit-torque magnetic RAM (SOT-MRAM) in the context of inference accuracy at 7nm technology node. Further, we study the effect of circuit design solutions such as Partial Wordline Activation (PWA) and custom ADC reference levels that reduce the hardware non-idealities and comparatively analyze the response of each technology to such accuracy enhancing techniques. Our results on ResNet-20 (with CIFAR-10) show that PWA increases accuracy by up to 32.56% while custom ADC reference levels yield up to 31.62% accuracy enhancement. We observe that compared to the other technologies, FeFET, by virtue of its small layout height and high distinguishability of its memory states, is best suited for large arrays. For higher bit-slices and a more complex dataset (ResNet-50 with Cifar-100) we found that ReRAM matches the performance of FeFET.

Submitted: Aug 11, 2024