Paper ID: 2408.06170
Zero-shot 3D Segmentation of Abdominal Organs in CT Scans Using Segment Anything Model 2
Yosuke Yamagishi, Shouhei Hanaoka, Tomohiro Kikuchi, Takahiro Nakao, Yuta Nakamura, Yukihiro Nomura, Soichiro Miki, Takeharu Yoshikawa, Osamu Abe
Objectives: To evaluate the zero-shot performance of Segment Anything Model 2 (SAM 2) in 3D segmentation of abdominal organs in CT scans, and to investigate the effects of prompt settings on segmentation results. Materials and Methods: In this retrospective study, we used a subset of the TotalSegmentator CT dataset from eight institutions to assess SAM 2's ability to segment eight abdominal organs. Segmentation was initiated from three different z-coordinate levels (caudal, mid, and cranial levels) of each organ. Performance was measured using the Dice similarity coefficient (DSC). We also analyzed the impact of "negative prompts," which explicitly exclude certain regions from the segmentation process, on accuracy. Results: 123 patients (mean age, 60.7 \pm 15.5 years; 63 men, 60 women) were evaluated. As a zero-shot approach, larger organs with clear boundaries demonstrated high segmentation performance, with mean DSCs as follows: liver 0.821 \pm 0.192, right kidney 0.862 \pm 0.212, left kidney 0.870 \pm 0.154, and spleen 0.891 \pm 0.131. Smaller organs showed lower performance: gallbladder 0.531 \pm 0.291, pancreas 0.361 \pm 0.197, and adrenal glands, right 0.203 \pm 0.222, left 0.308 \pm 0.234. The initial slice for segmentation and the use of negative prompts significantly influenced the results. By removing negative prompts from the input, the DSCs significantly decreased for six organs. Conclusion: SAM 2 demonstrated promising zero-shot performance in segmenting certain abdominal organs in CT scans, particularly larger organs. Performance was significantly influenced by input negative prompts and initial slice selection, highlighting the importance of optimizing these factors.
Submitted: Aug 12, 2024