Paper ID: 2408.06622
ActPrompt: In-Domain Feature Adaptation via Action Cues for Video Temporal Grounding
Yubin Wang, Xinyang Jiang, De Cheng, Dongsheng Li, Cairong Zhao
Video temporal grounding is an emerging topic aiming to identify specific clips within videos. In addition to pre-trained video models, contemporary methods utilize pre-trained vision-language models (VLM) to capture detailed characteristics of diverse scenes and objects from video frames. However, as pre-trained on images, VLM may struggle to distinguish action-sensitive patterns from static objects, making it necessary to adapt them to specific data domains for effective feature representation over temporal grounding. We address two primary challenges to achieve this goal. Specifically, to mitigate high adaptation costs, we propose an efficient preliminary in-domain fine-tuning paradigm for feature adaptation, where downstream-adaptive features are learned through several pretext tasks. Furthermore, to integrate action-sensitive information into VLM, we introduce Action-Cue-Injected Temporal Prompt Learning (ActPrompt), which injects action cues into the image encoder of VLM for better discovering action-sensitive patterns. Extensive experiments demonstrate that ActPrompt is an off-the-shelf training framework that can be effectively applied to various SOTA methods, resulting in notable improvements. The complete code used in this study is provided in the supplementary materials.
Submitted: Aug 13, 2024