Paper ID: 2408.06814
Structure-preserving Planar Simplification for Indoor Environments
Bishwash Khanal, Sanjay Rijal, Manish Awale, Vaghawan Ojha
This paper presents a novel approach for structure-preserving planar simplification of indoor scene point clouds for both simulated and real-world environments. Initially, the scene point cloud undergoes preprocessing steps, including noise reduction and Manhattan world alignment, to ensure robustness and coherence in subsequent analyses. We segment each captured scene into structured (walls-ceiling-floor) and non-structured (indoor objects) scenes. Leveraging a RANSAC algorithm, we extract primitive planes from the input point cloud, facilitating the segmentation and simplification of the structured scene. The best-fitting wall meshes are then generated from the primitives, followed by adjacent mesh merging with the vertex-translation algorithm which preserves the mesh layout. To accurately represent ceilings and floors, we employ the mesh clipping algorithm which clips the ceiling and floor meshes with respect to wall normals. In the case of indoor scenes, we apply a surface reconstruction technique to enhance the fidelity. This paper focuses on the intricate steps of the proposed scene simplification methodology, addressing complex scenarios such as multi-story and slanted walls and ceilings. We also conduct qualitative and quantitative performance comparisons against popular surface reconstruction, shape approximation, and floorplan generation approaches.
Submitted: Aug 13, 2024