Paper ID: 2408.06911
Heterogeneous Space Fusion and Dual-Dimension Attention: A New Paradigm for Speech Enhancement
Tao Zheng, Liejun Wang, Yinfeng Yu
Self-supervised learning has demonstrated impressive performance in speech tasks, yet there remains ample opportunity for advancement in the realm of speech enhancement research. In addressing speech tasks, confining the attention mechanism solely to the temporal dimension poses limitations in effectively focusing on critical speech features. Considering the aforementioned issues, our study introduces a novel speech enhancement framework, HFSDA, which skillfully integrates heterogeneous spatial features and incorporates a dual-dimension attention mechanism to significantly enhance speech clarity and quality in noisy environments. By leveraging self-supervised learning embeddings in tandem with Short-Time Fourier Transform (STFT) spectrogram features, our model excels at capturing both high-level semantic information and detailed spectral data, enabling a more thorough analysis and refinement of speech signals. Furthermore, we employ the innovative Omni-dimensional Dynamic Convolution (ODConv) technology within the spectrogram input branch, enabling enhanced extraction and integration of crucial information across multiple dimensions. Additionally, we refine the Conformer model by enhancing its feature extraction capabilities not only in the temporal dimension but also across the spectral domain. Extensive experiments on the VCTK-DEMAND dataset show that HFSDA is comparable to existing state-of-the-art models, confirming the validity of our approach.
Submitted: Aug 13, 2024