Paper ID: 2408.07191

Joint Graph Rewiring and Feature Denoising via Spectral Resonance

Jonas Linkerhägner, Cheng Shi, Ivan Dokmanić

In graph learning the graph and the node features both contain noisy information about the node labels. In this paper we propose joint denoising and rewiring (JDR)--an algorithm to jointly rewire the graph and denoise the features, which improves the performance of downstream node classification graph neural nets (GNNs). JDR improves the alignment between the leading eigenspaces of graph and feature matrices. To approximately solve the associated non-convex optimization problem we propose a heuristic that efficiently handles real-world graph datasets with multiple classes and different levels of homophily or heterophily. We theoretically justify JDR in a stylized setting and verify the effectiveness of our approach through extensive experiments on synthetic and real-world graph datasets. The results show that JDR consistently outperforms existing rewiring methods on node classification using GNNs as downstream models.

Submitted: Aug 13, 2024