Paper ID: 2408.07253

All-around Neural Collapse for Imbalanced Classification

Enhao Zhang, Chaohua Li, Chuanxing Geng, Songcan Chen

Neural Collapse (NC) presents an elegant geometric structure that enables individual activations (features), class means and classifier (weights) vectors to reach \textit{optimal} inter-class separability during the terminal phase of training on a \textit{balanced} dataset. Once shifted to imbalanced classification, such an optimal structure of NC can be readily destroyed by the notorious \textit{minority collapse}, where the classifier vectors corresponding to the minority classes are squeezed. In response, existing works endeavor to recover NC typically by optimizing classifiers. However, we discover that this squeezing phenomenon is not only confined to classifier vectors but also occurs with class means. Consequently, reconstructing NC solely at the classifier aspect may be futile, as the feature means remain compressed, leading to the violation of inherent \textit{self-duality} in NC (\textit{i.e.}, class means and classifier vectors converge mutually) and incidentally, resulting in an unsatisfactory collapse of individual activations towards the corresponding class means. To shake off these dilemmas, we present a unified \textbf{All}-around \textbf{N}eural \textbf{C}ollapse framework (AllNC), aiming to comprehensively restore NC across multiple aspects including individual activations, class means and classifier vectors. We thoroughly analyze its effectiveness and verify on multiple benchmark datasets that it achieves state-of-the-art in both balanced and imbalanced settings.

Submitted: Aug 14, 2024