Paper ID: 2408.07605

Panacea+: Panoramic and Controllable Video Generation for Autonomous Driving

Yuqing Wen, Yucheng Zhao, Yingfei Liu, Binyuan Huang, Fan Jia, Yanhui Wang, Chi Zhang, Tiancai Wang, Xiaoyan Sun, Xiangyu Zhang

The field of autonomous driving increasingly demands high-quality annotated video training data. In this paper, we propose Panacea+, a powerful and universally applicable framework for generating video data in driving scenes. Built upon the foundation of our previous work, Panacea, Panacea+ adopts a multi-view appearance noise prior mechanism and a super-resolution module for enhanced consistency and increased resolution. Extensive experiments show that the generated video samples from Panacea+ greatly benefit a wide range of tasks on different datasets, including 3D object tracking, 3D object detection, and lane detection tasks on the nuScenes and Argoverse 2 dataset. These results strongly prove Panacea+ to be a valuable data generation framework for autonomous driving.

Submitted: Aug 14, 2024