Paper ID: 2408.07734

Analog Spiking Neuron in CMOS 28 nm Towards Large-Scale Neuromorphic Processors

Marwan Besrour, Jacob Lavoie, Takwa Omrani, Gabriel Martin-Hardy, Esmaeil Ranjbar Koleibi, Jeremy Menard, Konin Koua, Philippe Marcoux, Mounir Boukadoum, Rejean Fontaine

The computational complexity of deep learning algorithms has given rise to significant speed and memory challenges for the execution hardware. In energy-limited portable devices, highly efficient processing platforms are indispensable for reproducing the prowess afforded by much bulkier processing platforms. In this work, we present a low-power Leaky Integrate-and-Fire (LIF) neuron design fabricated in TSMC's 28 nm CMOS technology as proof of concept to build an energy-efficient mixed-signal Neuromorphic System-on-Chip (NeuroSoC). The fabricated neuron consumes 1.61 fJ/spike and occupies an active area of 34 $\mu m^{2}$, leading to a maximum spiking frequency of 300 kHz at 250 mV power supply. These performances are used in a software model to emulate the dynamics of a Spiking Neural Network (SNN). Employing supervised backpropagation and a surrogate gradient technique, the resulting accuracy on the MNIST dataset, using 4-bit post-training quantization stands at 82.5\%. The approach underscores the potential of such ASIC implementation of quantized SNNs to deliver high-performance, energy-efficient solutions to various embedded machine-learning applications.

Submitted: Aug 14, 2024