Paper ID: 2408.07872
Autonomous on-Demand Shuttles for First Mile-Last Mile Connectivity: Design, Optimization, and Impact Assessment
Sudipta Roy, Gabriel Dadashev, Lampros Yfantis, Bat-hen Nahmias-Biran, Samiul Hasan
The First-Mile Last-Mile (FMLM) connectivity is crucial for improving public transit accessibility and efficiency, particularly in sprawling suburban regions where traditional fixed-route transit systems are often inadequate. Autonomous on-Demand Shuttles (AODS) hold a promising option for FMLM connections due to their cost-effectiveness and improved safety features, thereby enhancing user convenience and reducing reliance on personal vehicles. A critical issue in AODS service design is the optimization of travel paths, for which realistic traffic network assignment combined with optimal routing offers a viable solution. In this study, we have designed an AODS controller that integrates a mesoscopic simulation-based dynamic traffic assignment model with a greedy insertion heuristics approach to optimize the travel routes of the shuttles. The controller also considers the charging infrastructure/strategies and the impact of the shuttles on regular traffic flow for routes and fleet-size planning. The controller is implemented in Aimsun traffic simulator considering Lake Nona in Orlando, Florida as a case study. We show that, under the present demand based on 1% of total trips as transit riders, a fleet of 3 autonomous shuttles can serve about 80% of FMLM trip requests on-demand basis with an average waiting time below 4 minutes. Additional power sources have significant effect on service quality as the inactive waiting time for charging would increase the fleet size. We also show that low-speed autonomous shuttles would have negligible impact on regular vehicle flow, making them suitable for suburban areas. These findings have important implications for sustainable urban planning and public transit operations.
Submitted: Aug 15, 2024