Paper ID: 2408.08632

A Survey on Benchmarks of Multimodal Large Language Models

Jian Li, Weiheng Lu, Hao Fei, Meng Luo, Ming Dai, Min Xia, Yizhang Jin, Zhenye Gan, Ding Qi, Chaoyou Fu, Ying Tai, Wankou Yang, Yabiao Wang, Chengjie Wang

Multimodal Large Language Models (MLLMs) are gaining increasing popularity in both academia and industry due to their remarkable performance in various applications such as visual question answering, visual perception, understanding, and reasoning. Over the past few years, significant efforts have been made to examine MLLMs from multiple perspectives. This paper presents a comprehensive review of 200 benchmarks and evaluations for MLLMs, focusing on (1)perception and understanding, (2)cognition and reasoning, (3)specific domains, (4)key capabilities, and (5)other modalities. Finally, we discuss the limitations of the current evaluation methods for MLLMs and explore promising future directions. Our key argument is that evaluation should be regarded as a crucial discipline to support the development of MLLMs better. For more details, please visit our GitHub repository: this https URL.

Submitted: Aug 16, 2024