Paper ID: 2408.08661

MIA-Tuner: Adapting Large Language Models as Pre-training Text Detector

Wenjie Fu, Huandong Wang, Chen Gao, Guanghua Liu, Yong Li, Tao Jiang

The increasing parameters and expansive dataset of large language models (LLMs) highlight the urgent demand for a technical solution to audit the underlying privacy risks and copyright issues associated with LLMs. Existing studies have partially addressed this need through an exploration of the pre-training data detection problem, which is an instance of a membership inference attack (MIA). This problem involves determining whether a given piece of text has been used during the pre-training phase of the target LLM. Although existing methods have designed various sophisticated MIA score functions to achieve considerable detection performance in pre-trained LLMs, how to achieve high-confidence detection and how to perform MIA on aligned LLMs remain challenging. In this paper, we propose MIA-Tuner, a novel instruction-based MIA method, which instructs LLMs themselves to serve as a more precise pre-training data detector internally, rather than design an external MIA score function. Furthermore, we design two instruction-based safeguards to respectively mitigate the privacy risks brought by the existing methods and MIA-Tuner. To comprehensively evaluate the most recent state-of-the-art LLMs, we collect a more up-to-date MIA benchmark dataset, named WIKIMIA-24, to replace the widely adopted benchmark WIKIMIA. We conduct extensive experiments across various aligned and unaligned LLMs over the two benchmark datasets. The results demonstrate that MIA-Tuner increases the AUC of MIAs from 0.7 to a significantly high level of 0.9.

Submitted: Aug 16, 2024