Paper ID: 2408.08747

MicroSSIM: Improved Structural Similarity for Comparing Microscopy Data

Ashesh Ashesh, Joran Deschamps, Florian Jug

Microscopy is routinely used to image biological structures of interest. Due to imaging constraints, acquired images, also called as micrographs, are typically low-SNR and contain noise. Over the last few years, regression-based tasks like unsupervised denoising and splitting have found utility in working with such noisy micrographs. For evaluation, Structural Similarity (SSIM) is one of the most popular measures used in the field. For such tasks, the best evaluation would be when both low-SNR noisy images and corresponding high-SNR clean images are obtained directly from a microscope. However, due to the following three peculiar properties of the microscopy data, we observe that SSIM is not well suited to this data regime: (a) high-SNR micrographs have higher intensity pixels as compared to low-SNR micrographs, (b) high-SNR micrographs have higher intensity pixels than found in natural images, images for which SSIM was developed, and (c) a digitally configurable offset is added by the detector present inside the microscope which affects the SSIM value. We show that SSIM components behave unexpectedly when the prediction generated from low-SNR input is compared with the corresponding high-SNR data. We explain this by introducing the phenomenon of saturation, where SSIM components become less sensitive to (dis)similarity between the images. We propose an intuitive way to quantify this, which explains the observed SSIM behavior. We introduce MicroSSIM, a variant of SSIM, which overcomes the above-discussed issues. We justify the soundness and utility of MicroSSIM using theoretical and empirical arguments and show the utility of MicroSSIM on two tasks: unsupervised denoising and joint image splitting with unsupervised denoising. Since our formulation can be applied to a broad family of SSIM-based measures, we also introduce MicroMS3IM, a microscopy-specific variation of MS-SSIM.

Submitted: Aug 16, 2024