Paper ID: 2408.08873

Accelerating Giant Impact Simulations with Machine Learning

Caleb Lammers, Miles Cranmer, Sam Hadden, Shirley Ho, Norman Murray, Daniel Tamayo

Constraining planet formation models based on the observed exoplanet population requires generating large samples of synthetic planetary systems, which can be computationally prohibitive. A significant bottleneck is simulating the giant impact phase, during which planetary embryos evolve gravitationally and combine to form planets, which may themselves experience later collisions. To accelerate giant impact simulations, we present a machine learning (ML) approach to predicting collisional outcomes in multiplanet systems. Trained on more than 500,000 $N$-body simulations of three-planet systems, we develop an ML model that can accurately predict which two planets will experience a collision, along with the state of the post-collision planets, from a short integration of the system's initial conditions. Our model greatly improves on non-ML baselines that rely on metrics from dynamics theory, which struggle to accurately predict which pair of planets will experience a collision. By combining with a model for predicting long-term stability, we create an ML-based giant impact emulator, which can predict the outcomes of giant impact simulations with reasonable accuracy and a speedup of up to four orders of magnitude. We expect our model to enable analyses that would not otherwise be computationally feasible. As such, we release our training code, along with an easy-to-use API for our collision outcome model and giant impact emulator.

Submitted: Aug 16, 2024