Paper ID: 2408.09070
CodeTaxo: Enhancing Taxonomy Expansion with Limited Examples via Code Language Prompts
Qingkai Zeng, Yuyang Bai, Zhaoxuan Tan, Zhenyu Wu, Shangbin Feng, Meng Jiang
Taxonomies play a crucial role in various applications by providing a structural representation of knowledge. The task of taxonomy expansion involves integrating emerging concepts into existing taxonomies by identifying appropriate parent concepts for these new query concepts. Previous approaches typically relied on self-supervised methods that generate annotation data from existing taxonomies. However, these methods are less effective when the existing taxonomy is small (fewer than 100 entities). In this work, we introduce \textsc{CodeTaxo}, a novel approach that leverages large language models through code language prompts to capture the taxonomic structure. Extensive experiments on five real-world benchmarks from different domains demonstrate that \textsc{CodeTaxo} consistently achieves superior performance across all evaluation metrics, significantly outperforming previous state-of-the-art methods. The code and data are available at \url{https://github.com/QingkaiZeng/CodeTaxo-Pub}.
Submitted: Aug 17, 2024