Paper ID: 2408.10236
AID-DTI: Accelerating High-fidelity Diffusion Tensor Imaging with Detail-preserving Model-based Deep Learning
Wenxin Fan, Jian Cheng, Cheng Li, Jing Yang, Ruoyou Wu, Juan Zou, Shanshan Wang
Deep learning has shown great potential in accelerating diffusion tensor imaging (DTI). Nevertheless, existing methods tend to suffer from Rician noise and eddy current, leading to detail loss in reconstructing the DTI-derived parametric maps especially when sparsely sampled q-space data are used. To address this, this paper proposes a novel method, AID-DTI (\textbf{A}ccelerating h\textbf{I}gh fi\textbf{D}elity \textbf{D}iffusion \textbf{T}ensor \textbf{I}maging), to facilitate fast and accurate DTI with only six measurements. AID-DTI is equipped with a newly designed Singular Value Decomposition-based regularizer, which can effectively capture fine details while suppressing noise during network training by exploiting the correlation across DTI-derived parameters. Additionally, we introduce a Nesterov-based adaptive learning algorithm that optimizes the regularization parameter dynamically to enhance the performance. AID-DTI is an extendable framework capable of incorporating flexible network architecture. Experimental results on Human Connectome Project (HCP) data consistently demonstrate that the proposed method estimates DTI parameter maps with fine-grained details and outperforms other state-of-the-art methods both quantitatively and qualitatively.
Submitted: Aug 4, 2024