Paper ID: 2408.10709
Variable Assignment Invariant Neural Networks for Learning Logic Programs
Yin Jun Phua, Katsumi Inoue
Learning from interpretation transition (LFIT) is a framework for learning rules from observed state transitions. LFIT has been implemented in purely symbolic algorithms, but they are unable to deal with noise or generalize to unobserved transitions. Rule extraction based neural network methods suffer from overfitting, while more general implementation that categorize rules suffer from combinatorial explosion. In this paper, we introduce a technique to leverage variable permutation invariance inherent in symbolic domains. Our technique ensures that the permutation and the naming of the variables would not affect the results. We demonstrate the effectiveness and the scalability of this method with various experiments. Our code is publicly available at https://github.com/phuayj/delta-lfit-2
Submitted: Aug 20, 2024