Paper ID: 2408.11181

A Full DAG Score-Based Algorithm for Learning Causal Bayesian Networks with Latent Confounders

Christophe Gonzales, Amir-Hosein Valizadeh

Causal Bayesian networks (CBN) are popular graphical probabilistic models that encode causal relations among variables. Learning their graphical structure from observational data has received a lot of attention in the literature. When there exists no latent (unobserved) confounder, i.e., no unobserved direct common cause of some observed variables, learning algorithms can be divided essentially into two classes: constraint-based and score-based approaches. The latter are often thought to be more robust than the former and to produce better results. However, to the best of our knowledge, when variables are discrete, no score-based algorithm is capable of dealing with latent confounders. This paper introduces the first fully score-based structure learning algorithm searching the space of DAGs (directed acyclic graphs) that is capable of identifying the presence of some latent confounders. It is justified mathematically and experiments highlight its effectiveness.

Submitted: Aug 20, 2024