Paper ID: 2408.11836

Analysis of Unstructured High-Density Crowded Scenes for Crowd Monitoring

Alexandre Matov

We are interested in developing an automated system for detection of organized movements in human crowds. Computer vision algorithms can extract information from videos of crowded scenes and automatically detect and track groups of individuals undergoing organized motion that represents an anomalous behavior in the context of conflict aversion. Our system can detect organized cohorts against the background of randomly moving objects and we can estimate the number of participants in an organized cohort, the speed and direction of motion in real time, within three to four video frames, which is less than one second from the onset of motion captured on a CCTV. We have performed preliminary analysis in this context in biological cell data containing up to four thousand objects per frame and will extend this numerically to a hundred-fold for public safety applications. We envisage using the existing infrastructure of video cameras for acquiring image datasets on-the-fly and deploying an easy-to-use data-driven software system for parsing of significant events by analyzing image sequences taken inside and outside of sports stadiums or other public venues. Other prospective users are organizers of political rallies, civic and wildlife organizations, security firms, and the military. We will optimize the performance of the software by implementing a classification method able to distinguish between activities posing a threat and those not posing a threat.

Submitted: Aug 6, 2024