Paper ID: 2408.11969

DrivAerML: High-Fidelity Computational Fluid Dynamics Dataset for Road-Car External Aerodynamics

Neil Ashton, Charles Mockett, Marian Fuchs, Louis Fliessbach, Hendrik Hetmann, Thilo Knacke, Norbert Schonwald, Vangelis Skaperdas, Grigoris Fotiadis, Astrid Walle, Burkhard Hupertz, Danielle Maddix

Machine Learning (ML) has the potential to revolutionise the field of automotive aerodynamics, enabling split-second flow predictions early in the design process. However, the lack of open-source training data for realistic road cars, using high-fidelity CFD methods, represents a barrier to their development. To address this, a high-fidelity open-source (CC-BY-SA) public dataset for automotive aerodynamics has been generated, based on 500 parametrically morphed variants of the widely-used DrivAer notchback generic vehicle. Mesh generation and scale-resolving CFD was executed using consistent and validated automatic workflows representative of the industrial state-of-the-art. Geometries and rich aerodynamic data are published in open-source formats. To our knowledge, this is the first large, public-domain dataset for complex automotive configurations generated using high-fidelity CFD.

Submitted: Aug 21, 2024