Paper ID: 2408.14080

SONICS: Synthetic Or Not -- Identifying Counterfeit Songs

Md Awsafur Rahman, Zaber Ibn Abdul Hakim, Najibul Haque Sarker, Bishmoy Paul, Shaikh Anowarul Fattah

The recent surge in AI-generated songs presents exciting possibilities and challenges. While these inventions democratize music creation, they also necessitate the ability to distinguish between human-composed and synthetic songs to safeguard artistic integrity and protect human musical artistry. Existing research and datasets in fake song detection only focus on singing voice deepfake detection (SVDD), where the vocals are AI-generated but the instrumental music is sourced from real songs. However, these approaches are inadequate for detecting contemporary end-to-end artificial songs where all components (vocals, music, lyrics, and style) could be AI-generated. Additionally, existing datasets lack music-lyrics diversity, long-duration songs, and open-access fake songs. To address these gaps, we introduce SONICS, a novel dataset for end-to-end Synthetic Song Detection (SSD), comprising over 97k songs (4,751 hours) with over 49k synthetic songs from popular platforms like Suno and Udio. Furthermore, we highlight the importance of modeling long-range temporal dependencies in songs for effective authenticity detection, an aspect entirely overlooked in existing methods. To utilize long-range patterns, we introduce SpecTTTra, a novel architecture that significantly improves time and memory efficiency over conventional CNN and Transformer-based models. In particular, for long audio samples, our top-performing variant outperforms ViT by 8% F1 score while being 38% faster and using 26% less memory. Additionally, in comparison with ConvNeXt, our model achieves 1% gain in F1 score with 20% boost in speed and 67% reduction in memory usage. Other variants of our model family provide even better speed and memory efficiency with competitive performance.

Submitted: Aug 26, 2024