Paper ID: 2408.14229
Gallery-Aware Uncertainty Estimation For Open-Set Face Recognition
Leonid Erlygin, Alexey Zaytsev
Accurately estimating image quality and model robustness improvement are critical challenges in unconstrained face recognition, which can be addressed through uncertainty estimation via probabilistic face embeddings. Previous research mainly focused on uncertainty estimation in face verification, leaving the open-set face recognition task underexplored. In open-set face recognition, one seeks to classify an image, which could also be unknown. Here, the low variance of probabilistic embedding does not imply a low error probability: an image embedding could be close to several classes in a gallery, thus yielding high uncertainty. We propose a method aware of two sources of ambiguity in the open-set recognition system: (1) the gallery uncertainty caused by overlapping classes and (2) the uncertainty of the face embeddings. To detect both types, we use a Bayesian probabilistic model of embedding distribution, which provides a principled uncertainty estimate. Challenging open-set face recognition datasets, such as IJB-C, serve as a testbed for our method. We also propose a new open-set recognition protocol for whale and dolphin identification. The proposed approach better identifies recognition errors than uncertainty estimation methods based solely on image quality.
Submitted: Aug 26, 2024