Paper ID: 2408.14961

CVPT: Cross-Attention help Visual Prompt Tuning adapt visual task

Lingyun Huang, Jianxu Mao, Yaonan Wang, Junfei Yi, Ziming Tao

In recent years, the rapid expansion of model sizes has led to large-scale pre-trained models demonstrating remarkable capabilities. Consequently, there has been a trend towards increasing the scale of models. However, this trend introduces significant challenges, including substantial computational costs of training and transfer to downstream tasks. To address these issues, Parameter-Efficient Fine-Tuning (PEFT) methods have been introduced. These methods optimize large-scale pre-trained models for specific tasks by fine-tuning a select group of parameters. Among these PEFT methods, adapter-based and prompt-based methods are the primary techniques. Specifically, in the field of visual fine-tuning, adapters gain prominence over prompts because of the latter's relatively weaker performance and efficiency. Under the circumstances, we refine the widely-used Visual Prompt Tuning (VPT) method, proposing Cross Visual Prompt Tuning (CVPT). CVPT calculates cross-attention between the prompt tokens and the embedded tokens, which allows us to compute the semantic relationship between them and conduct the fine-tuning of models exactly to adapt visual tasks better. Furthermore, we introduce the weight-sharing mechanism to initialize the parameters of cross-attention, which avoids massive learnable parameters from cross-attention and enhances the representative capability of cross-attention. We conduct comprehensive testing across 25 datasets and the result indicates that CVPT significantly improves VPT's performance and efficiency in visual tasks. For example, on the VTAB-1K benchmark, CVPT outperforms VPT over 4% in average accuracy, rivaling the advanced adapter-based methods in performance and efficiency. Our experiments confirm that prompt-based methods can achieve exceptional results in visual fine-tuning.

Submitted: Aug 27, 2024