Paper ID: 2408.15076
MiWaves Reinforcement Learning Algorithm
Susobhan Ghosh, Yongyi Guo, Pei-Yao Hung, Lara Coughlin, Erin Bonar, Inbal Nahum-Shani, Maureen Walton, Susan Murphy
The escalating prevalence of cannabis use poses a significant public health challenge globally. In the U.S., cannabis use is more prevalent among emerging adults (EAs) (ages 18-25) than any other age group, with legalization in the multiple states contributing to a public perception that cannabis is less risky than in prior decades. To address this growing concern, we developed MiWaves, a reinforcement learning (RL) algorithm designed to optimize the delivery of personalized intervention prompts to reduce cannabis use among EAs. MiWaves leverages domain expertise and prior data to tailor the likelihood of delivery of intervention messages. This paper presents a comprehensive overview of the algorithm's design, including key decisions and experimental outcomes. The finalized MiWaves RL algorithm was deployed in a clinical trial from March to May 2024.
Submitted: Aug 27, 2024