Paper ID: 2408.15616
Beyond Levenshtein: Leveraging Multiple Algorithms for Robust Word Error Rate Computations And Granular Error Classifications
Korbinian Kuhn, Verena Kersken, Gottfried Zimmermann
The Word Error Rate (WER) is the common measure of accuracy for Automatic Speech Recognition (ASR). Transcripts are usually pre-processed by substituting specific characters to account for non-semantic differences. As a result of this normalisation, information on the accuracy of punctuation or capitalisation is lost. We present a non-destructive, token-based approach using an extended Levenshtein distance algorithm to compute a robust WER and additional orthographic metrics. Transcription errors are also classified more granularly by existing string similarity and phonetic algorithms. An evaluation on several datasets demonstrates the practical equivalence of our approach compared to common WER computations. We also provide an exemplary analysis of derived use cases, such as a punctuation error rate, and a web application for interactive use and visualisation of our implementation. The code is available open-source.
Submitted: Aug 28, 2024