Paper ID: 2408.16883
Revising Multimodal VAEs with Diffusion Decoders
Daniel Wesego, Amirmohammad Rooshenas
Multimodal VAEs often struggle with generating high-quality outputs, a challenge that extends beyond the inherent limitations of the VAE framework. The core issue lies in the restricted joint representation of the latent space, particularly when complex modalities like images are involved. Feedforward decoders, commonly used for these intricate modalities, inadvertently constrain the joint latent space, leading to a degradation in the quality of the other modalities as well. Although recent studies have shown improvement by introducing modality-specific representations, the issue remains significant. In this work, we demonstrate that incorporating a flexible diffusion decoder specifically for the image modality not only enhances the generation quality of the images but also positively impacts the performance of the other modalities that rely on feedforward decoders. This approach addresses the limitations imposed by conventional joint representations and opens up new possibilities for improving multimodal generation tasks using the multimodal VAE framework. Our model provides state-of-the-art results compared to other multimodal VAEs in different datasets with higher coherence and superior quality in the generated modalities
Submitted: Aug 29, 2024